Diffusion in different models of active Brownian motion
نویسندگان
چکیده
منابع مشابه
Canonical active Brownian motion.
Active Brownian motion is the complex motion of active Brownian particles. They are "active" in the sense that they can transform their internal energy into energy of motion and thus create complex motion patterns. Theories of active Brownian motion so far imposed couplings between the internal energy and the kinetic energy of the system. We investigate how this idea can be naturally taken furt...
متن کاملBrownian motion with active fluctuations.
We study the effect of different types of fluctuation on the motion of self-propelled particles in two spatial dimensions. We distinguish between passive and active fluctuations. Passive fluctuations (e.g., thermal fluctuations) are independent of the orientation of the particle. In contrast, active ones point parallel or perpendicular to the time dependent orientation of the particle. We deriv...
متن کاملDiffusion and Brownian motion in Lagrangian coordinates.
In this paper we consider the convection-diffusion problem of a passive scalar in Lagrangian coordinates, i.e., in a coordinate system fixed on fluid particles. Both the convection-diffusion partial differential equation and the Langevin equation are expressed in Lagrangian coordinates and are shown to be equivalent for uniform, isotropic diffusion. The Lagrangian diffusivity is proportional to...
متن کاملActive Brownian motion in a narrow channel
We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels o...
متن کاملSmoluchowski diffusion equation for active Brownian swimmers.
We study the free diffusion in two dimensions of active Brownian swimmers subject to passive fluctuations on the translational motion and to active fluctuations on the rotational one. The Smoluchowski equation is derived from a Langevin-like model of active swimmers and analytically solved in the long-time regime for arbitrary values of the Péclet number; this allows us to analyze the out-of-eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Physical Journal Special Topics
سال: 2008
ISSN: 1951-6355,1951-6401
DOI: 10.1140/epjst/e2008-00629-7